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Abstract

We consider linear mixed models in which observations are grouped. A `1-
penalization on the fixed effects coefficients of the log-likelihood obtained by con-
sidering the random effects as missing values is proposed. A multicycle ECM al-
gorithm, which can be combined with any variable selection method developed for
linear models, was used to solve the optimization problem. The algorithm allows
for a number of parameters p to be larger than the total number of observations n
and is faster than the lmmLasso method of Schelldorfer et al. (2011) since no n x
n matrix needs to be inverted. We show that the theoretical results of Schelldorfer
et al. (2011) apply for our method when the variances of both the random effects
and the residuals are known. When combined with a variable selection method of
Rohart (2011), the algorithm provided good estimations for the set of relevant fixed
effect coefficients as well as variances. It outperforms the lmmLasso both in common
(p < n) and high-dimensional settings (p ≥ n).

1 Introduction

More and more real data sets contain high-dimensional data owing to the more extensive
use of new technologies such as high-thoughput DNA/RNA chips or RNA sequencing in
biology. High-dimensional settings, in which the number of parameters p is greater than
the number of observations n, generally means that the problem cannot be solved. In
order to address this problem, various constraints are implemented. Common constraints
are for example sparsity, which implies that a lot of parameters are zero, or use of a
well-conditioned variance matrix for the observations. Many studies have addressed the
problem of variable selection, most of which have used a linear model Y = Xβ+ε, where X
is an n× p matrix containing the observations and ε is a n-vector of i.i.d random variables
(usually Gaussian). One of the oldest method is the Akaike Information Criterion (AIC),
which is a penalization of the log-likelihood by a function of the number of parameters
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included in the model. More recently, the both simple and powerful Lasso (Least Absolute
Shrinkage and Selection Operator) method (Tibshirani, 1996) revolutionized the field. The
Lasso works by applying a `1 -penalty to the estimate of least squares which shrinks some
coefficients to exactly zero. Various extensions exist for the Lasso: group Lasso (Yuan and
Lin, 2007), adaptive Lasso (Huang et al., 2008) and a more stable version known as Bo-
Lasso (Bach, 2009), for example. Penalizing the likelihood is not the only way to perform
variable selection. Indeed recent statistical tests (Rohart, 2011) also appear to provide
good results.

In all the previously described methods, observations are considered to be independent
and identically distributed. These methods are therefore no longer adapted when struc-
tured information, such as family relationships or common environmental effects, becomes
available. In a linear mixed model, the observations are assumed to be clustered. The
variance-covariance matrix V of the observations is therefore no longer diagonal but, in
some cases, can be assumed to be block diagonal. In the literature, most reports of lin-
ear mixed models relate to the estimation of variance components, using either maximum
likelihood estimation (ML) (Henderson, 1973, 1953), or restricted maximum likelihood es-
timation (REML) which accounts for the loss in degrees of freedom due to fitting fixed
effects (Patterson and Thompson, 1971; Harville, 1977; Henderson, 1984; Foulley et al.,
2006). However, both methods assume that each fixed effect and each random effect is
relevant. This assumption might be wrong and result in falsely estimated parameters, es-
pecially for high-dimensional analysis. Contrarily to the linear model, there are few reports
on the selection of fixed effect coefficients using a linear mixed model in a high-dimensional
setting.

Both Bondell et al. (2010) and Ibrahim et al. (2011) used penalized likelihoods to
perform selection of both fixed and random effects. Bondell et al. (2010) introduced a con-
strained EM algorithm to solve the optimization problem, which becomes computationally
complex in a high-dimensional context (it should be noted that their simulation studies
were only designed for a low dimensional setting). Moreover, the methods of both Bondell
et al. (2010) and Ibrahim et al. (2011) rely on Cholesky decompositions and, as pointed
out by Müller et al. (2013), these decompositions are dependent on the order in which
the random effects appear and are not permutation invariant (Pourahmadi, 2011). In the
present paper, the selection of both fixed and random effects is out of the scope because
the aim of the study was to analyze a real dataset with only a few random effects.

Schelldorfer et al. (2011) have studied the selection of fixed effects in a high dimensional
setting. Their paper introduced an algorithm based on `1-penalization of the maximum
likelihood estimator in order to select the relevant fixed effect coefficients. As highlighted
in their paper, their algorithm relies on the possibly time-consuming process of inverting
the variance matrix of the observations V .

We present in this paper an efficient way to select fixed effects in a linear mixed model.
We propose that random effects be considered as missing data, as previously described in
Bondell et al. (2010) and Foulley (1997), and to introduce a `1-penalty on the log-likelihood
of the complete data . We propose a multicycle ECM algorithm with convergence proper-
ties (Foulley, 1997; McLachlan and Krishnan, 2008; Meng and Rubin, 1993) to solve the
optimization problem and provide theoretical results when the variances of the observa-
tions are known. Due to its step design, the algorithm can be combined with any variable
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selection method built for linear models. Nevertheless, the performance of the combination
depends to a great extent on the variable selection method that is used. As there is little
literature on the selection of fixed effects in a high-dimensional linear mixed model, we will
mainly compare our results to those of Schelldorfer et al. (2011).

The analysis is then extended to a real data set from a project in which hundreds of
pigs were studied, our aim being to shed light on the relationships between some of the
phenotypes of interest and metabolomic data (Rohart et al., 2012). Linear mixed models
are appropriate in this case because observations are in fact repeated data collected in
different environments (groups of animals reared together in the same conditions). Some
individuals were also genetically related, introducing a family effect. The data set consisted
of 506 individuals from 3 breeds, 8 environments and 157 families, metabolomic data con-
tained p = 375 variables, and the phenotype investigated was the Daily Feed Intake (DFI).

This paper is organized as follows: first the linear mixed model and objective function
are described, and then the multicycle ECM algorithm used to solve the optimization
problem of the objective function is detailed. In Section 3.1, the algorithm described in
Section 2 is generalized so that it can be used with any variable selection method developed
for linear models. Next, the results from a simulation study are presented and show that
the combination of this new algorithm with a good variable selection method performs well
(Section 4). Finally, in Section 5, the method is applied to a real data set.

2 The method

Let us introduce some notations that will be used throughout the paper. V ar(a) denotes
the variance-covariance matrix of the vector a. For all a > 0, set Ia the identity matrix of
Ra. For A ∈ Rn×p, denote I a subset of {1, . . . , n} and J a subset of {1, . . . , p}. Let AI,J
A.,J and AI,. denote submatrices of A respectively composed of elements of A with rows in
I and columns in J , columns in J and all rows, and rows in I and all columns. Moreover,
for all a > 0, b > 0, we denoted 0a to be the vector of size a in which all coordinates were
0 and 0a×b to be the null matrix of size a× b. Let us denote |A| the determinant of matrix
A.

2.1 Setting-up the linear mixed model

We consider the linear mixed model in which observations are grouped and we suppose
that only a small subset of fixed effect coefficients are nonzero. The aim of this study is to
recover this subset using the algorithm presented in the next section of the paper. In the
present section we describe the linear mixed model and our objective function.

Assuming that there are q random effects, let N be the total number of groups and n
the total number of observations with n =

∑N
i=1 ni, where ni is the number of observations

within group i. We denoted Nq = qN .
The linear mixed model can be written as

y = Xβ +

q∑
k=1

Zkuk + ε, (1)

where
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• y is the set of observed data of length n,

• β is an unknown vector of Rp; β = (β1, . . . , βp),

• X is the n× p matrix of fixed effects; X = (X1, . . . , Xp),

• For k = 1, . . . , q, uk = (u1
k, . . . , u

N
k ) is a N -vector of i.i.d. coordinates for random

effect k,

• For k = 1, . . . , q, Zk is a n × N incidence matrix (each row of Zk contains only one
nonzero coefficient),

• ε = (ε1, . . . , εn)′ is a Gaussian vector with i.i.d. components ε ∼ Nn(0, σ2
eIn), where

σe is an unknown positive quantity. We denote by R the variance-covariance matrix
of ε, R = σ2

eIn.

An example of matrices Zk for n = 6 and two random effects is provided below.

Let Z1 =


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

 and Z2 =


x1 0 0
x2 0 0
0 x3 0
0 x4 0
0 0 x5

0 0 x6

. Note that Z2 is the incidence matrix of

the interaction of the variable x = (x1, . . . , x6) and the grouping factor.
We denote u = (u′1, . . . , u

′
q)
′ and Z the concatenation of (Z1, . . . , Zq), and assume

that u ∼ NNq(0, G). Let us denote by Ψ = (Ψi,j)1≤i,j≤q the matrix defined by: Ψi,j ={
cov(u1

i , u
1
j) if i 6= j

var(u1
i ) if i = j

, then we obtain G = Ψ⊗ IN , where ⊗ is the Kronecker product.

One can remark that with these notations, Model (1) can also be written as: y =
Xβ + Zu+ ε.

In the following, we assume that ε and u are independent. Thus V ar(u, ε) =

(
G 0
0 R

)
.

We consider the matrices X and {Zk}1,...,q to be fixed design. Note that our model (1)
and the one in Schelldorfer et al. (2011) are identical.

Let us denote by J the set of the indices of the relevant fixed effects of Model (1);
J = {j, βj 6= 0}. The aim of this paper is to estimate J , β, G and R. Throughout the
paper, the number of fixed effects p can be greater than the total number of observations n.
However, we focus on the case where only a few fixed-effects are relevant since this paper
was motivated by such a case on a real data set, see Section 5. We assume Nq + |J | < n.

2.2 A `1 penalization of the complete log-likelihood

In the following, we consider the fixed effects coefficients β and the variance matrix G as
parameters and {uk}k∈{1,...,q} as missing data. We denote Φ = (β,G, σ2

e).
The log-likelihood of the complete data x = (y, u) is

L(Φ;x) = L0(β, σ2
e , G; ε) + L1(G;u), (2)
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where

−2L0(β, σ2
e , G; ε) = n log(2π) + n log(σ2

e) +

∣∣∣∣∣
∣∣∣∣∣y −Xβ −

q∑
k=1

Zkuk

∣∣∣∣∣
∣∣∣∣∣
2

/σ2
e , (3a)

−2L1(G;u) = Nq log(2π) + log(|G|) + u′G−1u. (3b)

Indeed, (2) results from p(x|Φ) = p(y|β, u, σ2
e)p(u|G); (3a) from L0(β, σ2

e , G; ε) =
L0(σ2

e ; ε) = n log(2π) + n log(σ2
e) + ε′ε/σ2

e because ε|σ2
e ∼ Nn(0, σ2

eIn) and (3b) from
u|G ∼ NNq(0, G).

Since we allow for a number of fixed-effects p greater than the total number of obser-
vations n, the usual maximum likelihood (ML) or restricted maximum likelihood (REML)
approaches do not apply. Because we assumed that β is sparse (many coefficients are
assumed to be null) and because we want to recover that sparsity, we add a `1 penalty
on β to the log-likelihood of the complete data (2). Indeed `1 penalization is known to
induce sparsity in the solution, as in the Lasso method (Tibshirani, 1996) or the lmmLasso
method (Schelldorfer et al., 2011). Thus we consider the following objective function to be
minimized:

g(Φ;x) = −2L(Φ;x) + λ|β|1, (4)

where λ is a positive regularization parameter. It should be noted that the function g
could have been obtained in a Bayesian setting considering a Laplace prior on β.
It is interesting to note that finding a minimum of the objective function (4) is a non-linear,
non-differentiable and non-convex problem. More importantly, a striking fact (especially
noticeable in (3b)) is that the function g is not lower-bounded. Indeed, L(Φ;x) tends to
infinity when |G| tends towards 0, i.e. when a random effect should not have been included
in the model. This is a well-known problem of likelihood degeneracy, especially studied
in Gaussian mixture model (Biernacki and Chrétien, 2003). In linear mixed models, some
authors focus on the log-likelihood of the marginal model in which the random effects are
integrated in the matrix of variance of the observations Y . This is the case in Schelldorfer
et al. (2011):

y = Xβ + ε, where ε ∼ N (0, V ).

Note that V = ZGZ ′+R. The degeneracy of the likelihood can also appear in the marginal
model when the determinant of V tends towards zero. This phenomenon is likely to occur
in a high dimensional context when the model includes too many fixed-effects, that is to
say when insufficient regularization is applied by the lmmLasso penalty (Schelldorfer et al.,
2011) or by λ in (4).

In the next section, a multicycle ECM algorithm is used to solve the minimization of
(4) and select fixed-effects.

2.3 A multicycle ECM algorithm

The multicycle ECM algorithm (Meng and Rubin, 1993; Foulley, 1997; McLachlan and
Krishnan, 2008) used to solve the minimization problem of (4) contains four steps: two E
steps interlaced with two M steps. Each step is described in this section.
It should be recalled that Φ = (β,G, σ2

e) is the vector of the parameters to estimate and
that u = (u′1, . . . , u

′
k)
′ is a vector of missing values. The multicyle ECM algorithm is an
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iterative algorithm. Iterations are indexed by t ∈ N and Θ[t] denotes the estimation of
parameter Θ at iteration t.

Let Eu|y,Φ=Φ[t] denote the conditional expectation under the distribution of u given the
vector of observations y and the current estimation of the set of parameters Φ at iteration
t.

2.3.1 First E-step

Let us denote
Q(Φ; Φ[t]) = Eu|y,Φ=Φ[t] [g(Φ;x)].

Q can be decomposed as follows:

Q(Φ; Φ[t]) = Q0(β,G, σ2
e ; Φ[t]) +Q1(G; Φ[t]),

where

Q0(β,G, σ2
e ; Φ[t]) = n log(2π) + n log(σ2[t]

e ) + Eu|y,Φ=Φ[t](ε′ε)/σ2[t]
e + λ|β[t]|1

and
Q1(G; Φ[t]) = Nq log(2π) + log(|G[t]|) + Eu|y,Φ=Φ[t](u′G−1[t]u).

By definition,

Eu|y,Φ=Φ[t](ε′ε) =
∣∣∣∣Eu|y,Φ=Φ[t] (ε)

∣∣∣∣2 + tr
(
V aru|y,Φ=Φ(t) (ε)

)
.

Eu|y,Φ=Φ[t](ε′ε) can be further detailed as:

Eu|y,Φ=Φ[t](ε′ε) =
∣∣∣∣y −Xβ[t] − ZE

(
u|y,Φ = Φ[t]

)∣∣∣∣2 + tr
(
ZV ar

(
u|y,Φ[t]

)
Z ′
)
. (5)

As designated by Henderson (1973), E
(
u|y,Φ = Φ[t]

)
is the BLUP (Best Linear Unbiased

Prediction) of u for the vector of parameters Φ equal to Φ[t]. Let us denote u[t+1/2] =
E
(
u|y,Φ = Φ[t]

)
, we have that

u[t+1/2] = (Z ′Z + σ2[t]
e G−1[t])−1Z ′

(
y −Xβ[t]

)
.

2.3.2 M-Step for β

The next step minimizes Q0(β,G, σ2
e ; Φ[t]) with respect to β:

β[t+1] = Argmin
β

(
1

σ
2[t]
e

∣∣∣∣(y − Zu[t+1/2]
)
−Xβ

∣∣∣∣2 + λ |β|1
)
. (6)

It can be remarked that (6) is a Lasso on β with the vector of “observed” data
(
y − Zu[t+1/2]

)
and the penalty λσ

2[t]
e .
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2.3.3 Second E-Step

A second E-step is performed with the update of the vector of missing values u: u[t+1] =

E
(
u|y, β = β[t+1], G = G[t], σ2

e = σ
2[t]
e

)
, thus

u[t+1] = (Z ′Z + σ2[t]
e G−1[t])−1Z ′

(
y −Xβ[t+1]

)
.

We define ∀k ∈ K, u
[t+1]
k to be the element of size N for the random effect k in u[t+1].

2.3.4 M-step for (G, σ2
e)

Variance matrices G and R are updated based on the minimization of Q1 and Q0 respec-
tively.
Let us recall that G = Ψ ⊗ IN . We can therefore write Q1(G; Φ[t]) = Nq log(2π) +

N log(|Ψ[t]|)+ tr(Ψ−1[t]Ω[t]), where Ω[t] =
{
ω

[t]
i,j = E(u′iuj|y,Φ = Φ[t])

}
. Thanks to a lemma

reported in Anderson (1984), the minimization of Q1 with respect to Ψ gives Ψ[t+1] =

Ω[t]/N . Thus, for all 1 ≤ i, j ≤ q, Ψ
[t+1]
i,j = E

(
u′iuj|y,G[t], σ

2[t]
e , β[t+1]

)
/N .

Besides, for all 1 ≤ i, j ≤ q

E
(
u′iuj|y, σ

2[t]
k , σ2[t]

e , β[t+1]
)

= u
[t+1]
i

′
u

[t+1]
j +

N∑
k=1

cov
u|y,σ2[t]

k ,σ
2[t]
e ,β[t+1](uik, ujk).

Moreover, we can use the following results of Henderson (1973),

cov
u|y,σ2[t]

k ,σ
2[t]
e ,β[t+1](ui, uj) = Ti,jσ

2[t]
e ,

where Ti,j is defined as follows:

(
Z ′Z + σ2[t]

e G−1[t]
)−1

=


Z ′1Z1 + σ

2[t]
e Ψ1,1[t]IN Z ′1Z2 + σ

2[t]
e Ψ1,2[t]IN . . . Z ′1Zq + σ

2[t]
e Ψ1,q[t]IN

Z ′2Z1 + σ
2[t]
e Ψ2,1[t]IN Z ′2Z2 + σ

2[t]
e Ψ2,2[t]IN . . . Z ′2Zq + σ

2[t]
e Ψ2,q[t]IN

...
...

. . .
...

Z ′qZ1 + σ
2[t]
e Ψq,1[t]IN Z ′qZ2 + σ

2[t]
e Ψq,2[t]IN . . . Z ′qZq + σ

2[t]
e Ψq,q[t]IN


−1

=


T1,1 T1,2 . . . T1,q

T ′1,2 T2,2 . . . T2,q
...

...
. . .

...
T ′1,q T ′2,q . . . Tq,q

 ,

with 
Ψ1,1 Ψ1,2 . . . Ψ1,q

Ψ2,1 Ψ2,2 . . . Ψ2,q

...
...

. . .
...

Ψq,1 Ψq,2 . . . Ψq,q

 =


Ψ1,1 Ψ1,2 . . . Ψ1,q

Ψ2,1 Ψ2,2 . . . Ψ2,q
...

...
. . .

...
Ψq,1 Ψq,2 . . . Ψq,q


−1

.
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Thus:

Ψ
[t+1]
i,j =

1

N

[
u

[t+1]
i

′
u

[t+1]
j + tr(Ti,j)σ

2[t]
e

]
.

The minimization of Q0 with respect to σ2
e gives: σ

2[t+1]
e = Eu|y,Φ=Φ[t](ε′ε)/n. From (5), we

have

σ2[t+1]
e =

1

n

[∣∣∣∣y −Xβ[t+1] − Zu[t+1]
∣∣∣∣2 + tr

(
Z(Z ′Z + σ2[t]

e G−1[t])−1Z ′
)
σ2[t]
e

]
.

Since

tr
(
Z
(
Z ′Z + σ2[t]

e G−1[t]
)−1

Z ′
)

= tr
((
Z ′Z + σ2[t]

e G−1[t]
)−1

Z ′Z
)

= Nq − tr
[(
Z ′Z + σ2[t]

e G−1[t]
)−1

σ2[t]
e G−1[t]

]
= Nq − σ2[t]

e tr
(
TG−1[t]

)
we have

σ2[t+1]
e =

1

n

[∣∣∣∣y −Xβ[t+1] − Zu[t+1]
∣∣∣∣2 + σ2[t]

e

(
Nq − σ2[t]

e tr
(
TG−1[t]

))]
.

In summary, the algorithm can be detailed as follows:

Algorithm 2.1 (Lasso+). Initialization:

Initialize the set of parameters Φ[0] = (G[0], σ
2[0]
e , β[0]).

Define Z as the concatenation of Z1, . . . , Zq and u = (u′1, . . . , u
′
q)
′.

Until convergence:
1. E-step
u[t+1/2] = (Z ′Z + σ

2[t]
e G−1[t])−1Z ′

(
y −Xβ[t]

)
2. M-step

β[t+1] = Argmin
β

(∣∣∣∣(y − Zu[t+1/2]
)
−Xβ

∣∣∣∣2 + λσ
2[t]
e |β|1

)
3. E-step
u[t+1] = (Z ′Z + σ

2[t]
e G−1[t])−1Z ′

(
y −Xβ[t+1]

)
4. M-step

(a) Set Ψ
[t+1]
i,j =

1

N

[
u

[t+1]
i

′
u

[t+1]
j + tr(Ti,j)σ

2[t]
e

]
and G[t+1] = Ψ[t+1] ⊗ IN

(b) Set σ
2[t+1]
e =

1

n

[∣∣∣∣y −Xβ[t+1] − Zu[t+1]
∣∣∣∣2 + σ

2[t]
e

(
Nq − σ2[t]

e tr
(
TG−1[t]

))]
end

Convergence of Algorithm 2.1 is ensured because it is a multicycle ECM algorithm
(Meng and Rubin, 1993).
Three stopping criteria are used to stop the convergence process of the algorithm: a first
criterion on ||β[t+1]−β[t]||2, a second on ||u[t+1]

k −u[t]
k ||2 for each random effect uk and lastly

a criterion on ||L(Φ[t+1], x)−L(Φ[t], x)||2 where L(Φ, x) is the log-likelihood defined by (2).
Convergence occurs when all criteria are fulfilled. We implemented an additional fourth
condition that limited the number of iterations. We choose to initialize the Algorithm
2.1 using the following conditions: G[0] is the block diagonal matrix of σ

2[0]
1 IN , . . . , σ

2[0]
q IN

where for all 1 ≤ k ≤ q, σ
2[0]
k = 0.4

q
σ

2[−1]
e , σ

2[0]
e = 0.6 σ

2[−1]
e , and (σ

2[−1]
e , β[0]) is estimated
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from a linear estimation (without the random effects) of the Lasso with the given penalty
λ. In Section 4.4, the impact of initializing the algorithm is investigated on simulated data.

Because the estimation of the set of parameters Φ is biased (Zhang and Hunag, 2008),
one last step can be added in order to address this problem once both Algorithm 2.1 has
converged and the penalization parameter λ has been tuned. Indeed, it is better to use
Algorithm 2.1 to estimate the support of β and then estimate the set Φ using a classic
mixed model estimation based on the model:

y = XβĴ +
∑

1≤k≤q

Zkuk + ε,

where Ĵ is the estimated set of indices of the relevant fixed effects.

Proposition 2.2. When the variances are known, minimization of the objective function
(4) is the same as that of Q(β) = (y − Xβ)′V −1(y − Xβ) + λ|β|1, which is the objective
function described in Schelldorfer et al. (2011) with known variances.

Let us recall that in Schelldorfer et al. (2011), the authors provided theoretical results
as regards to the consistency of their method. Based on Proposition 2.2, these results
apply to our method in the case of known variances. Proof for Proposition 2.2 is provided
in Appendix C.

2.4 The tuning parameter

The solution depends on a regularization parameter, included in Algorithm 2.1, that con-
trols shrinkage. This parameter has to be tuned. We choose to use of the Bayesian
Information Criterion (BIC) to do this (Schwarz, 1978):

λBIC = Argmin
λ

{
log |Vλ|+ (y −Xβ̂λ)′V −1

λ (y −Xβ̂λ) + dλ. log(n)
}
,

where Vλ = ZĜZ ′+ σ̂2
eIn and Ĝ, σ̂2

e , β̂λ are obtained from the minimization of the objective
function g defined by (4). Moreover, dλ is the sum of the number of non-zero variance-
covariance parameters and the number of non-zero fixed effects coefficients included in the
model selected with the regularization parameter λ.

Other methods could have been used to tune λ such as AIC or cross-validation. We
opted for BIC rather than cross-validation mainly because of the gain in computational
time.

In the next section, we propose a generalization of Algorithm 2.1 for use with any of
the variable selection methods developed for linear models.

3 Extending the method

3.1 Generalizing the algorithm

Algorithm 2.1 provides good results, as demonstrated for the simulation study in Section 4.
Nevertheless, because the aim of the second step of the algorithm is to select the relevant
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coefficients of β in a linear model, the Lasso method can be replaced by any variable
selection method built for linear models. If the variable selection method optimizes a
criterion, such as the adaptive Lasso (Zou, 2006) or the elastic net (Zou and Hastie, 2005),
the resulting algorithm is a multicycle ECM algorithm and the convergence property still
holds. However, the convergence property does not hold for methods that do not optimize
a criterion.

Algorithm 2.1 can be reshaped for a generalized algorithm as follows:

Algorithm 3.1. Initialization:

Initialize the set of parameters Φ[0] = (G[0], σ
2[0]
e , β[0]).

Define Z as the concatenation of Z1, . . . , Zq and u = (u′1, . . . , u
′
q)
′.

Until convergence:

1. u[t+1/2] = (Z ′Z + σ
2[t]
e G−1[t])−1Z ′

(
y −Xβ[t]

)
2. Variable selection and estimation of β in the linear model y − Zu[t+1/2] = Xβ + ε[t],
where ε[t] ∼ N (0, σ

2[t]
e In).

3. u[t+1] = (Z ′Z + σ
2[t]
e G−1[t])−1Z ′

(
y −Xβ[t+1]

)
4. (a) Set Ψ

[t+1]
i,j =

1

N

[
u

[t+1]
i

′
u

[t+1]
j + tr(Ti,j)σ

2[t]
e

]
and G[t+1] = Ψ[t+1] ⊗ IN

(b) Set σ
2[t+1]
e =

1

n

[∣∣∣∣y −Xβ[t+1] − Zu[t+1]
∣∣∣∣2 + σ

2[t]
e

(
Nq − σ2[t]

e tr
(
TG−1[t]

))]
end

We choose to initialize Algorithm 3.1 in the same way as Algorithm 2.1.
In the following we propose to combine Algorithm 2.1 with a method that does not require
a tuning parameter, namely the procbol method (Rohart, 2011). The procbol method
sequentially tests multiple hypotheses and determines statistically the set of relevant vari-
ables in the linear model y = Xβ + ε where ε is an i.i.d Gaussian noise. This method
consists of two steps: first, variables are ordered taking into account the observations y
and then, in the second step, multiple hypotheses are tested to distinguish between rele-
vant and irrelevant variables. The procbol method has proved to be powerful under certain
conditions as reported in Rohart (2011).

3.2 Generalizing the model to different grouping variables

Assume that there are q random effects and q grouping factors (q ≥ 1), where some
grouping factors may be identical. The levels of the factor k are denoted {1, 2, . . . , Nk}.
The ith-observation belongs to the groups (i1, . . . , iq), where for all l = 1, . . . , q, il ∈
{1, 2, . . . , Nl}. It should be noted that two observations can belong to the same group for
a given grouping factor and to different groups for another grouping factor.

In this setting, the total number of observations is n =
∑Nk

i=1 ni,k,∀k ≤ q, where ni,k is
the number of observations within group i from the grouping factor k. We therefore have
N =

∑q
k=1Nk.

The linear mixed model can be written as

y = Xβ +

q∑
k=1

Zkuk + ε, (7)

the differences with model (1) being that
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• For k = 1, . . . , q, uk is a Nk-vector of the random effect for grouping factor k, ,

• For k = 1, . . . , q, Zk is a n×Nk incidence matrix for grouping factor k.

Both Algorithms 2.1 and 3.1 apply with Model (7) when random effects are considered
to be independent. Indeed, the covariance matrix G of (u1, . . . , uq) has to be a diagonal
matrix since the two vectors have to be of the same length for the covariance matrix
to be estimated. Ψ is therefore also a diagonal matrix and for all 1 ≤ k ≤ q, Ψk,k =
1

Nk

[
u

[t+1]
k

′
u

[t+1]
k + tr(Tk,k)σ

2[t]
e

]
, where Tk,k is defined as in Section 2.

In the particular case of independence of the random effects, a naive selection of the
random effects can be performed when the variance of a random effect drops to 0. When
Ψk,k is too small at some step t of the ECM algorithm, the random effect uk is removed
from the model.

In Section 4, we show that the combination of Algorithm 3.1 and the procbol method
performs well on simulated data.

4 Simulation study

The purpose of this section is to compare different methods that aim at selecting the
correct fixed effects coefficients in a linear mixed model (1). We shall also determine
whether including random effects in the model improves its performances.

4.1 Methods used

We compare several methods. Some of the methods are designed to work in a linear
model: Lasso (Tibshirani, 1996), adLasso (Zou, 2006) and procbol (Rohart, 2011), while
others are designed to work in a linear mixed model: lmmLasso (Schelldorfer et al., 2011),
Algorithm 2.1 (designated as Lasso+), adLasso+Algorithm 3.1 (designated as adLasso+)
and procbol+Algorithm 3.1 (designated as pbol+).
The initial weights of the adLasso and adLasso+ are both set to 1/|β̃i| where for all i ∈
{1, . . . , p}, β̃i is the Ordinary Least Squares (OLS) estimate of βi in the model yi = Xiβi+εi.

The second step of the procbol method performs multiple hypothesis testing thanks to
an estimation of unknown quantiles related to the matrix X. Computing these quantiles
at each iteration of the convergence process would make the combination of the procbol
method and Algorithm 3.1 almost impossible to run, but in this case the quantiles remain
unchanged because no changes occur in the data matrix X throughout the algorithm. The
procbol method could therefore be run several times on the same data set with unvarying
quantiles. This results in a considerable gain in computational time. Some parameters of
the procbol method are changed in order to limit the time of each iteration of the con-
vergence process. The parameter m that denotes the number of bootstrapped samples
used to sort the variables (first step of the procbol method) is set to 10. The number of
variables arranged in order during the first step of the procbol method is set to 40. Note
that when the procbol method is used in a linear model, we set m = 100 as recommended
in Rohart (2011). Both the procbol method and the pbol+ method are set with a user-level
of α = 0.1, which reflects for the level of the testing procedure.

11



For all methods requiring tuning, the tuning parameter is set using the Bayesian Infor-
mation Criterion as described in Section 2.4. Particular attention is paid to tuning the
regularization parameter for some methods, especially Lasso and adLasso, as it can be
difficult in some cases due to the degeneracy of the likelihood (see Appendix B).

4.2 Design of our simulation study

We set X1 to be the vector of Rn in which coordinates are all equal to 1 and then consider
three models. For each model, the response variable y is computed via y =

∑5
j=1Xijβij +∑q

k=1 Zkuk + ε, where J = {i1, . . . , i5} ⊂ {1, . . . , p}, with q random effects being Gaussian
and ε being a vector of independent standard Gaussian variables. We set N = 20 and
∀i ∈ {1, .., 20} ni = 6. The models used to fit the data differ in the number of parameters
p, the number of random effects q, the matrix Ψ and the dependence structure of the Xi’s.
For each model, we have for all j = 2, . . . , p:

∑n
i=1 Xj,i = 0 and 1

n

∑n
i=1X

2
j,i = 1. For

k = 1, . . . , q, the random effects regression matrix Zk corresponds to the design matrix of
the interaction between the kth column of X and the grouping factor, which gives a n×N
matrix. The design of the matrices Zk’s means that the q grouping variables generates
both a fixed effect (for to βk’s) and a random effect (for to uk’s). As recommended in
Schelldorfer et al. (2011), the variables that generate both a fixed and a random effect do
not undergo feature selection to avoid shrinkage of the fixed effect coefficients for those
variables towards 0. The models are defined as follows:

• M1: n = 120, p = 80, βJ = 3/4, q = 3 and Ψ = I3. For all j = 2, . . . , p,Xj ∼
Nn(0, In).

• M2: n = 120, p = 300, βJ = 3/4, q = 2 with var(u1) = var(u2) = 1 and cov(u1, u2) =
0.5. The covariates are generated from a multivariate normal distribution with mean
zero and covariance matrix Σ with the pairwise correlation Σkk′ = ρ|k−k

′| and ρ = 0.5.

• M3: n = 120, p = 600, βJ = 3/4, q = 2 and Ψ = I2. The covariates are generated
from a multivariate normal distribution with mean zero and covariance matrix Σ
with the pairwise correlation Σkk′ = ρ|k−k

′| and ρ = 0.5.

We also consider a fourth setting in order to study Section 3.2. In this setting the random
effects are supposed to be independent and the grouping variables to be different:

• M4: n = 120, p = 300, βJ = 2/3, q = 2 and Ψ = I2. For all j = 2, . . . , p,Xj ∼
Nn(0, In). The two grouping variables are different: N1 = 20, ∀i ∈ {1, .., 20} ni,1 = 6
and N2 = 15,∀i ∈ {1, .., 15} ni,2 = 8

For all models we set J = {1, 2, i3, i4, i5} where {i3, i4, i5} ⊂ {3, . . . , p}; in addition,
i3 = 3 for model M1.

The aim is to recover the set of relevant fixed effects coefficients J for each model as well
as to estimate the variance matrix of both the random effects and residuals. To evaluate
the quality of the methods, we use several criteria: the percentage of true model recovered
under the label ‘Truth’, the cardinal of the estimated set of fixed effects coefficients |Ĵ |,
the number of true positives TP , the estimated variance σ̂2

e of the residuals, the estimated
variances Ψ̂ of the random effects and the mean squared error mse calculated as an `2
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Figure 1: Summary of the results of the simulation study for models M1 −M4 (X axis).
Results of ‘Ĵ = J ’ (a) and Mean Squared Error (b) for each model.

error rate between the real value -Xβ- and the estimation -Xβ̂-. We also determined the
Signal-to-Noise Ratio (SNR) as ||Xβ||22/||

∑q
k=1 Zkuk + ε||22 for each of the replications.

4.3 Comments on the results

Detailed results of the simulation study are available in Appendix A. A summary of the
main results is shown in Figure 1. It should be noted that the lmmLasso method of the
R-package could not be computed for model M4 because the function does not support
different grouping variables.

In all models, results are improved by switching from a simple linear model to a linear
mixed model. Indeed significant differences are observed between Lasso and Lasso+ or
procbol and pbol+, especially with model M3 (high dimensional setting).

For all models, lmmLasso and Lasso+ give very similar results. This is not really sur-
prising since both methods are based on a `1-penalization of the log likelihood.

As regards to the adLasso+ method, it provides a better mse result than the Lasso+
method, but in the meantime the percentage of true positives is lower and the number of
selected variables is higher. In our simulations, tuning of the regularization parameter was
difficult for both of these methods. Indeed due to the degeneracy of the likelihood, the
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grid over which the penalty is tuned has to be chosen with care (see Appendix B).
The best results are obtained when Algorithm 3.1 is combined with the procbol method

(pbol+). This combination provides by far the greatest percentage of true model recovery,
estimated fixed effects is the closest to real values and the mse is the lowest among the
tested methods. Nevertheless, mse results for both Lasso+ and lmmLasso could easily be
improved by using a linear mixed model estimation as described in Section 2.3 (see Table
7 in Appendix A). It is also interesting to note that the pbol+ method always converged
in our simulations.

A R-package “MMS” is available on CRAN (http://cran.r-project.org). This package
contains tools for selecting fixed effects using linear mixed models, including the previously
described Lasso+, adLasso+, pbol+ methods.
All the results presented in this section were obtained following specific initialization of
the algorithms. The next paragraph focuses on the impact of such initialization.

4.4 Impact of initializing our algorithms

Both Algorithm 2.1 and Algorithm 3.1 start by initializing the parameter Φ = (G, σ2
e , β),

as mentioned previously in Section 2.3.
We tested different initializations of our algorithms and found that the algorithms

always converged towards the same point, whatever the initialization of Φ (not shown).
However, the further Φ[0] was set from the true value of Φ, the higher the number of
iterations needed to converge.

5 Application on a real data-set

In this section we analyze a real data set previously described in Rohart et al. (2012). The
aim of this analysis is to pinpoint metabolomic data that describes a phenotype taking into
account all the available information such as the breed, the batch effect and the relationship
between individuals. In the present case, we study the Daily Feed Intake phenotype (DFI).
We model the data as follows:

y = XBβB +XMβM + ZEuE + ZFuF + ε, (8)

where y is the DFI phenotype and XB, XM , ZE, ZF are the design matrices of the breed
effect, the metabolomic data, the batch effect and the family effect, respectively. We con-
sider two random effects, the batch and the family effects, and consider that each level
of these factors is a random sample drawn from a much larger population of batches and
families, contrary to the breed factor. Since the grouping variables are different, we assume
that the random effects are independent. We denote by G the block diagonal matrix with
blocks σ2

EIN1 and σ2
F IN2 , with N1 = 8, N2 = 157 and where σ2

E and σ2
F are the variances of

the batch and the family effect respectively. Note that the coefficients βB do not undergo
feature selection.
We compare several methods using this model: Lasso, adLasso, procbol, Lasso+, adLasso+
and pbol+ (see Section 4). The model which is considered for the first three methods is
y = XBβB + XMβM + ε. Both methods procbol and pbol+ were set with a user-level of
α = 0.1. The results are presented in Table 1.
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|Ĵ | σ̂2
e σ̂2

E σ̂2
F

Lasso 14 3.8× 10−2 - -
adLasso 21 3.4× 10−2 - -
procbol 11 4.1× 10−2 - -
Lasso+ 11 3.2× 10−2 3.2× 10−3 6.4× 10−3

adLasso+ 10 3.3× 10−2 2.5× 10−3 6.5× 10−3

pbol+ 5 3.4× 10−2 5.9× 10−3 6.5× 10−3

Table 1: Results for the real data set

Methods CPU Time
Lasso+ 0.80
lmmLasso 24.28

Table 2: CPU Time for a single run with the same model

When random effects are considered, we observe a decrease of both the residual variance
and the number of selected metabolomic variables. This behavior is in accordance with
the simulation study. The question that arises from this analysis is to determine whether
the variables selected in the linear mixed models are more relevant than those in the linear
model. Biological analysis will be carried out to answer that question.

Table 2 shows the computational time for one run when we only consider the batch
effect is considered (in order to compute the lmmLasso). As can be seen, when a large
number of observations are included, the Lasso+ method is much faster than the lmmLasso
method (due to the inversion of the matrix of variance V at each step of the convergence
process). This simulation was performed on a 2.80GHz CPU with 8.00Go of RAM with a
regularization parameter that selects the same model for both methods,

6 Conclusion

In this paper, we proposed to add a `1-penalization on the complete log-likelihood in order
to perform selection of the fixed effects in a linear mixed model. The multicycle ECM al-
gorithm used to minimize the objective function can also be used to select random effects.
This algorithm provides the same results as the lmmLasso method described in Schelldor-
fer et al. (2011), but much faster. Theoretical results obtained in this paper are identical
to those found in Schelldorfer et al. (2011) when the variances are known. The structure
of our algorithm means that it can be combined with any variable selection method built
for linear models, but in some cases this can result in loss of the convergence property.
Nonetheless, the combined procbol method gives good results when tested on simulated
data and outperforms other approaches.
We applied all of these methods to a real data set and demonstrated that the residual
variance could be reduced, even with a smaller set of selected variables.
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vraisemblance en modèle linéaire mixte. J. SFdS, 1-2:5–52.

Harville, D. (1977). Maximum likelihood approaches to variance component estimation
and to related problems. J. Amer. Statist. Assoc., 72:320–340.

Henderson, C. (1953). Estimation of variance and covariance components. Biometrics,
9:226–252.

Henderson, C. (1973). Sire evaluation and genetic trends. Journal of Animal Science,
pages 10–41.

Henderson, C. (1984). Applications of linear models in Animal breeding. University of
Guelph, Ont.

Huang, J., Ma, S., and Zhang, C.-H. (2008). Adaptative lasso for sparse high-dimensional
regression models. Stat. Sin., 18(4):1603–1618.

Ibrahim, J. G., Zhu, H., Garcia, R. I., and Guo, R. (2011). Fixed and random effects
selection in mixed effects models. Biometrics, 67:495–503.

McLachlan, J. and Krishnan, T. (2008). The EM Algorithm and Extensions, second edition.
Wiley-Interscience.

Meng, X.-L. and Rubin, D. B. (1993). Maximum likelihood estimation via the ecm algo-
rithm: A general framework. Biometrika, 80:267–278.

16



Müller, S., Scealy, J., and Welsh, A. (2013). Model selection in linear mixed model. Statist
Sci. to appear.

Patterson, H. and Thompson, R. (1971). Recovery of inter-block information when block
sizes are unequal. Biometrika, 58:545–554.

Pourahmadi, M. (2011). Covariance estimation: The glm and regularization perspectives.
Statist Sci., 26(3):369–387.

Rohart, F. (2011). Multiple hypotheses testing for variable selection. arXiv:1106.3415v1.

Rohart, F., Paris, A., Laurent, B., Canlet, C., Molina, J., Mercat, M. J., Tribout, T.,
Muller, N., Ianuccelli, N., Villa-Vialaneix, N., Liaubet, L., Milan, D., and San-Cristobal,
M. (2012). Phenotypic prediction based on metabolomic data on the growing pig from
three main european breeds. Journal of Animal Science.
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Appendix A - Results of the simulation study

Table 3: Results for model M1. The recovery rate of the true model was recorded -‘Truth’- as
well as Ĵ = J . |J | is the number of fixed effects selected and TP the number of relevant fixed
effects selected. The signal to noise ratio is equal to SNR = 0.60(0.12). Standard errors are
given between parentheses, for 100 runs.

Ĵ = J |Ĵ | TP σ̂2
e σ̂2

1 σ̂2
2 σ̂2

3 σ̂2
12 σ̂2

23 σ̂2
13

Ideal 1 5 5 5 1 1 1 0 0 0

Lasso 0.06 4.43 3.43 4.68 - - - - - -
(2.58) (1.44) (1.01) - - - - - -

adLasso 0.08 5.25 3.78 4.15 - - - - - -
(2.63) (1.18) (1.02) - - - - - -

procbol 0.22 3.89 3.61 4.88 - - - - -
(2.09) (1.14) (1.08) - - - - - -

Lasso+ 0.34 6.19 4.98 1.05 0.97 1.13 0.94 -0.02 -0.00 -0.06
(1.21) (0.14) (0.11) (0.42) (0.49) (0.39) (0.37) (0.34) (0.30)

adLasso+ 0.31 6.33 4.93 1.00 0.93 1.04 0.91 -0.02 0.00 -0.06
(1.75) (0.26) (0.12) (0.41) (0.48) (0.39) (0.34) (0.32) (0.30)

lmmLasso 0.36 6.23 4.98 1.09 0.98 1.12 0.95 0.14 0.16 0.10
(1.52) (0.14) (0.22) (0.40) (0.47) (0.38) (0.24) (0.25) (0.20)

pbol+ 0.78 4.76 4.76 1.03 0.95 1.06 0.94 0.00 -0.00 -0.07
(0.47) (0.47) (0.13) (0.40) (0.45) (0.37) (0.34) (0.35) (0.31)

β̂1 β̂2 β̂3 β̂4 β̂5 MSE

Ideal 0.67 0.67 0.67 0.67 0.67 0.00

Lasso 0.73 0.19 0.29 0.23 0.24 1.13
(0.28) (0.26) (0.28) (0.22) (0.21) (0.50)

adLasso 0.73 0.30 0.47 0.39 0.38 0.92
(0.28) (0.36) (0.36) (0.28) (0.28) (0.47)

procbol 0.73 0.49 0.67 0.55 0.60 0.97
(0.28) (0.50) (0.45) (0.41) (0.41) (0.54)

Lasso+ 0.73 0.62 0.74 0.46 0.39 0.45
(0.24) (0.29) (0.28) (0.13) (0.14) (0.22)

adLasso+ 0.74 0.66 0.75 0.57 0.52 0.37
(0.23) (0.29) (0.28) (0.17) (0.20) (0.23)

lmmLasso 0.73 0.62 0.74 0.46 0.40 0.45
(0.23) (0.29) (0.27) (0.13) (0.14) (0.21)

pbol+ 0.74 0.71 0.76 0.72 0.66 0.37
(0.24) (0.31) (0.28) (0.20) (0.34) (0.30)
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Table 4: Results for model M2. The recovery rate of the true model was recorded -‘Truth’- as
well as Ĵ = J . |J | is the number of fixed effects selected and TP the number of relevant fixed
effects selected. The signal to noise ratio is equal to SNR = 0.90(0.19). Standard errors are
given between parentheses, for 100 runs.

Results Ĵ = J |Ĵ | TP σ̂2
e σ̂2

1 σ̂2
2 σ̂1,2

Ideal 1 5 5 1 1 1 0.5

Lasso 0.07 6.86 4.16 3.64 - - -
(11.81) (1.18) (0.95) - - -

adLasso 0.10 6.56 4.45 3.05 - - -
(2.67) (0.76) (0.76) - - -

procbol 0.35 4.11 3.96 3.76 - -
(1.08) (1.02) (0.74) - - -

Lasso+ 0.28 6.87 5.00 1.12 0.94 0.98 0.47
(1.89) (0.00) (0.16) (0.39) (0.38) (0.27)

adLasso+ 0.33 6.92 4.99 1.00 0.90 0.95 0.46
(2.25) (0.10) (0.14) (0.37) (0.37) (0.26)

lmmLasso 0.30 6.87 5.00 1.16 0.93 0.97 0.48
(1.91) (0.00) (0.21) (0.39) (0.38) (0.27)

pbol+ 0.97 4.99 4.98 0.99 0.95 0.99 0.48
(0.17) (0.14) (0.11) (0.38) (0.37) (0.27)

β̂i1 β̂i2 β̂i3 β̂i4 β̂i5 MSE

Ideal 0.75 0.75 0.75 0.75 0.75 0.00

Lasso 0.81 0.25 0.32 0.25 0.28 1.09
(0.25) (0.26) (0.17) (0.18) (0.18) (0.51)

adLasso 0.81 0.38 0.51 0.40 0.45 0.72
(0.25) (0.35) (0.19) (0.23) (0.19) (0.35)

procbol 0.81 0.58 0.67 0.62 0.59 0.76
(0.25) (0.48) (0.33) (0.37) (0.36) (0.54)

Lasso+ 0.84 0.70 0.51 0.47 0.49 0.39
(0.23) (0.29) (0.12) (0.12) (0.11) (0.18)

adLasso+ 0.83 0.71 0.62 0.56 0.60 0.28
(0.23) (0.28) (0.13) (0.15) (0.13) (0.17)

lmmLasso 0.84 0.70 0.51 0.47 0.49 0.39
(0.23) (0.29) (0.12) (0.11) (0.11) (0.18)

pbol+ 0.80 0.74 0.75 0.74 0.75 0.18
(0.23) (0.29) (0.11) (0.15) (0.11) (0.16)
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Table 5: Results for model M3. The recovery rate of the true model was recorded -‘Truth’- as
well as Ĵ = J . |J | is the number of fixed effects selected and TP the number of relevant fixed
effects selected. The signal to noise ratio is equal to SNR = 0.92(0.20). Standard errors are
given between parentheses, for 100 runs.

Results Ĵ = J |Ĵ | TP σ̂2
e σ̂2

1 σ̂2
2 σ̂1,2

Ideal 1 5 5 5 1 1 0

Lasso 0.02 5.19 3.24 3.86 - - -
(3.54) (1.51) (1.01) - - -

adLasso 0.02 6.88 3.75 3.18 - - -
(3.57) (1.17) (0.92) - - -

procbol 0.16 3.38 3.08 4.13 - -
(1.32) (1.22) (0.76) - - -

Lasso+ 0.04 8.33 4.95 1.16 0.98 0.92 0.01
(2.53) (0.22) (0.18) (0.44) (0.46) (0.31)

adLasso+ 0.01 9.31 4.88 1.01 0.93 0.89 0.01
(3.22) (0.36) (0.17) (0.40) (0.42) (0.31)

lmmLasso 0.07 8.23 4.96 1.23 0.97 0.92 0.13
(2.57) (0.20) (0.27) (0.42) (0.43) (0.19)

pbol+ 0.75 4.8 4.66 1.04 0.97 0.94 0.00
(0.68) (0.70) (0.20) (0.41) (0.44) (0.32)

β̂i1 β̂i2 β̂i3 β̂i4 β̂i5 MSE

Ideal 0.75 0.75 0.75 0.75 0.75 0.00

Lasso 0.78 0.24 0.08 0.21 0.18 1.39
(0.28) (0.29) (0.13) (0.18) (0.18) (0.58)

adLasso 0.78 0.38 0.13 0.38 0.32 1.00
(0.28) (0.35) (0.18) (0.21) (0.26) (0.50)

procbol 0.78 0.59 0.25 0.46 0.50 1.14
(0.28) (0.51) (0.38) (0.43) (0.43) (0.62)

Lasso+ 0.79 0.69 0.28 0.41 0.41 0.54
(0.26) (0.26) (0.14) (0.12) (0.12) (0.21)

adLasso+ 0.78 0.69 0.35 0.53 0.51 0.41
(0.27) (0.24) (0.19) (0.13) (0.18) (0.21)

lmmLasso 0.78 0.69 0.28 0.40 0.40 0.55
(0.26) (0.25) (0.14) (0.12) (0.12) (0.21)

pbol+ 0.78 0.74 0.62 0.70 0.69 0.32
(0.27) (0.26) (0.30) (0.21) (0.26) (0.34)
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Table 6: Results for model M4. The recovery rate of the true model was recorded -‘Truth’- as
well as Ĵ = J . |J | is the number of fixed effects selected and TP the number of relevant fixed
effects selected. The signal to noise ratio is equal to SNR = 0.83(0.16). Standard errors are
given between parentheses, for 100 runs.

Results Ĵ = J |Ĵ | TP σ̂2
e σ̂2

1 σ̂2
2

Ideal 1 5 5 5 1 1 1

Lasso 0.22 4.96 4.13 3.32 - -
(2.18) (1.10) (0.80) - -

adLasso 0.20 6.10 4.58 2.85 - -
(2.19) (0.70) (0.72) - -

procbol 0.28 4.37 4.12 2.90 - -
(1.08) (0.77) (0.79) - -

Lasso+ 0.20 7.07 4.99 1.11 0.91 0.92
(2.01) (0.10) (0.22) (0.36) (0.46)

adLasso+ 0.24 6.70 4.97 0.97 0.88 0.88
(1.51) (0.17) (0.19) (0.34) (0.45)

lmmLasso - - - - - -
- - - - -

pbol+ 0.93 5.09 5.00 0.95 0.91 0.89
(0.38) (0.00) (0.17) (0.33) (0.44)

β̂1 β̂2 β̂3 β̂4 β̂5 MSE

Ideal 0.67 0.67 0.67 0.67 0.67 0.00

Lasso 0.69 0.69 0.18 0.20 0.27 0.90
(0.25) (0.32) (0.17) (0.17) (0.17) (0.40)

adLasso 0.69 0.68 0.32 0.36 0.46 0.60
(0.25) (0.32) (0.21) (0.21) (0.22) (0.32)

procbol 0.73 0.65 0.48 0.51 0.57 0.63
(0.34) (0.13) (0.36) (0.36) (0.35) (0.42)

Lasso+ 0.71 0.71 0.40 0.38 0.43 0.41
(0.24) (0.29) (0.12) (0.11) (0.11) (0.19)

adLasso+ 0.71 0.69 0.50 0.48 0.56 0.30
(0.24) (0.29) (0.16) (0.14) (0.13) (0.18)

lmmLasso - - - - - -
- - - - - -

pbol+ 0.71 0.69 0.67 0.65 0.68 0.19
(0.24) (0.29) (0.12) (0.10) (0.10) (0.16)

21



Table 7: Results for model M2 when a ML linear regression is added after the convergence of the
algorithm. The recovery rate of the true model was recorded -‘Truth’- as well as Ĵ = J . |J | is the
number of fixed effects selected and TP the number of relevant fixed effects selected. The signal
to noise ratio is equal to SNR = 0.63(0.11). Standard errors are given between parentheses, for
100 runs.

Ideal lmmLasso Lasso+

Truth 1 0.30 0.28

|Ĵ | 5 6.87(1.91) 6.87(1.89)
TP 5 5.00(0.00) 5.00(0.00)

σ̂2
e 1 0.91(0.17) 0.90(0.13)
σ̂2

1 1 0.99(0.40) 0.92(0.38)
σ̂2

2 1 1.04(0.38) 0.97(0.36)
σ̂2

1,2 0.5 0.50(0.29) 0.47(0.28)

β̂1 0.75 0.81(0.23) 0.81(0.23)

β̂2 0.75 0.74(0.29) 0.74(0.29)

β̂3 0.75 0.71(0.13) 0.72(0.12)

β̂4 0.75 0.72(0.12) 0.72(0.12)

β̂5 0.75 0.72(0.13) 0.72(0.13)

mse 0 0.31(0.21) 0.31(0.20)
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Appendix B - Remarks on the tuning parameter

In some cases, in particular for the Lasso method and the adLasso method, tuning of the
regularization parameter could become difficult. In this section, we discuss this occurs.

To begin, we shall consider the classical linear model before moving on to the linear
mixed model. Let us first examine the Lasso method when only applied in a classical
linear model and compare two penalizations of the likelihood: BIC and the Extended BIC
(EBIC) (Chen and Chen, 2008). The EBIC penalizes a space of dimension k with a term
that depends on the number of spaces that have the same dimension, which is p!

k!(p−k)!
.

Thus EBIC penalizes more the complex spaces than BIC. Figure 2 shows the behavior of
the BIC and EBIC criteria, the log-likelihood and the residual variance for various values
of the regularization parameter of the Lasso in a low dimensional setting (p = 80). As can
be observed, tuning the regularization parameter in this setting raises no problems.

(a) BIC or EBIC depending on the value of
the regularization parameter of the Lasso
method

(b) −2×log-Likelihood depending on the
regularization parameter of the Lasso
method

(c) Residual variance depending on the reg-
ularization parameter of the Lasso method

Figure 2: One simulation of linear model for the Lasso method with n = 120, p =
80 and βJ = 1.

Let us now consider a simulation in a high dimensional setting with n = 120 observa-
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tions and p = 600 explanatory variables. Results for the regularization parameter of the
Lasso are presented in Figure 3 for both methods.

(a) BIC or EBIC depending on the value of
the regularization parameter of the Lasso

(b) −2×log-Likelihood depending on the
regularization parameter of the Lasso
method

(c) Residual variance depending on the reg-
ularization parameter of the Lasso method

Figure 3: One simulation of linear model for the Lasso method with n = 120, p =
600 and βJ = 1.

Firstly, we confirm that EBIC is more conservative than BIC and penalizes complex
spaces to greater extent. On the far left of Figure 3(a), we observe that both the BIC
and the EBIC curves decrease when the regularization parameter is close to zero. This
phenomenon is due to the degeneracy of the likelihood as seen in Figure 3(b) (stated in
Section 2 for mixed models, this phenomenon also occurs for linear models). Figure 3(c)
shows that degeneracy of the likelihood is due to the decrease of residual variance that
drops to zero when the regularization parameter is close to zero, and thus when too many
variables enter the model.

To conclude, neither BIC nor EBIC penalties are strong enough to completely balance
the degeneracy of the likelihood. However, the EBIC penalty does result in selection of
a more parsimonious model while BIC penalty selects a more complex model. Nonethe-
less, the EBIC penalty is usually too much conservative in practice, and this is why the
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BIC penalty was used in our simulation study. When degeneracy occurs, when p increases
for example, the regularization parameter should be optimized over an interval where the
likelihood is more or less stable, i.e. not over the far left part of Figure 3(a) where the
criterion decreases.

When the regularization parameter was tuned for the Lasso+ method, degeneracy of
the likelihood was never found to occur in our simulations (Figure 4). However, if it did
occur, the same advice as provided above for the classical linear model should be followed.
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(c) Residual variance depending on the
regularization parameter of the Lasso+
method

Figure 4: One simulation of Lasso+ with n = 120, p = 600, βJ = 1 and two i.i.d.
random effects.

25



Appendix C - Proof of Proposition 2.2

G and R are supposed to be known. Thus the minimization of our objective function g
reduces to the minimization of the following function in (β, u):
h(u, β) = (y −Xβ − Zu)′R−1(y −Xβ − Zu) + u′G−1u+ λ|β|1.
Let us denote (û, β̂) = argmin

(u,β)

h(u, β). Since the function h is convex, we have:

(û, β̂) =


u(β) = argmin

u
h(u, β)

β̂ = argmin
β

h(u(β), β)

û = u(β̂)

Since
∂h(u, β)

∂u
exists, we can explicit the minimum of h in u:

(û, β̂) =


u(β) = (Z ′R−1Z +G−1)−1Z ′R−1(y −Xβ)

β̂ = argmin
β

h(u(β), β)

û = u(β̂)
Thus, we obtain:

h(u(β), β) = (y −Xβ − Zu(β))′R−1(y −Xβ − Zu(β)) + u′G−1u+ λ|β|1
= (y −Xβ)′R−1(y −Xβ)− (y −Xβ)R−1Zu(β)− (Zu(β))′R−1(y −Xβ)

+ (Zû)′R−1Zu(β) + u(β)′G−1u(β) + λ|β|1
= (y −Xβ)′[R−1 −R−1Z(Z ′R−1Z +G−1)−1Z ′R−1](y −Xβ) + λ|β|1

Denote W = R−1 − R−1Z(Z ′R−1Z +G−1)−1Z ′R−1. We can show that W = (Z ′GZ +
R−1)−1 = V −1. This result comes from the equivalence between the resolution of Hender-
son’s equations (Henderson, 1973) and the generalized least squares.

To conclude, we have that

(û, β̂) =

(
(Z ′R−1Z +G−1)−1Z ′R−1(y −Xβ̂), argmin

β
(y −Xβ)′V −1(y −Xβ) + λ|β|1

)
.
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